(4)

\[4 \, ^1H \rightarrow ^2\text{He} + 2 \, ^0\text{e} \]

\[E = (4 \cdot m_\text{H} - m_\text{He} - 2 \cdot m_\text{e}) \cdot 931.5 \]

\[E = (4 \cdot 1.007825 - 4 \cdot 0.02603 - 2 \cdot 0.000549) \cdot 931.5 = 25.71 \text{ MeV} \]

(5)

Fusión 1 g de ^{235}U

\[\frac{200 \text{ MeV}}{2 \cdot 35 \text{ u}} \cdot \frac{6.023 \times 10^{23} \text{ u}}{1 \text{ g}} = 5.126 \times 10^{-23} \text{ MeV} \]

\[\frac{5.126 \times 10^{-23} \text{ MeV}}{9 \cdot 235 \text{ u}} \cdot \frac{1 \text{ MeV}}{1 \text{ eV}} \cdot \frac{1 \text{ eV}}{1 \text{ J}} \cdot \frac{1 \text{ kcal}}{10^3 \text{ J}} = 1970.82 \text{ kcal} \]

1970.82 kcal de carbono

\[\frac{1 \text{ kcal}}{6000 \text{ kcal}} = 3284.7 \text{ kg de carbono} \]

(6)

a) $^{235}\text{U} + ^1\text{n} \rightarrow ^{94}\text{Sr} + ^{140}\text{Xe} + 2 ^0\text{He}$

\[\Delta m = m(U) - m(Sr) - m(Xe) - m(n) = 234.9943 - 93.9754 - 139.9196 - 1.0089 = 0.0904 \text{ u} \]

\[= 1.5009 \times 10^{-25} \text{ Kg} \]

b) Por cada 235 u de U se produce la siguiente energía:

\[E = 1.5009 \times 10^{-25} \times (3.10^8)^2 = 1.73 \times 10^{15} \text{ J} \]

\[\frac{1.73 \times 10^{15} \text{ J}}{235 \text{ u}} \cdot \frac{6.02 \times 10^{23} \text{ u}}{1 \text{ g}} = 173 \cdot 10^{15} \text{ J} \]

2